Tuesday, 2 July 2019

Newtons law and planetary motion

Introduction
In 1687 Isaac Newton published Philosophiae Naturalis Principia Mathematica, a work of immense and profound impact. Newton's pronounced three laws of motion and a law of universal gravitation. They were a united set of principles which applied not only to the heavens but also to the earth in a uniform way. Their simplicity and extremely broad applicability forever changed astronomy.

circular orbit
When the string is released, the ball will fly straight away, not along the curve.

1st Law of Motion: Law of Inertia
A body remains at rest, or moves in a straight line (at a constant velocity), unless acted upon by a net outside force.
The law of inertia did not originate with Newton, nevertheless it is integral to his system of mechanics. An object in motion will remain in motion unless something acts upon it. Because a planet is moving in an ellipse (i.e. not a straight line) this law states that there must be some “force” acting upon the planet. If there were no force, the planet would fly off in a straight line.

2nd Law of Motion: F = ma

The acceleration of an object is proportional to the force acting upon it.
The first law says that if no force is acting on an object, it will remain in motion. The second law tells how the motion will change when a force acts upon the object. Velocity is how fast an object is moving (speed or magnitude) and the direction it is moving. Acceleration is a change in velocity. An accelerating object can either change how fast it is moving, the direction it is moving, or both.

3rd Law: Law of Reciprocal Actions

For every action, there is an equal and opposite reaction.
The law can be more fully stated as, “Whenever one body exerts force upon a second body, the second body exerts an equal and opposite force upon the first body.” That is, when the sun pulls on a planet with the force of gravity, the planet pulls on the sun with a force of equal magnitude. But, because the sun is so much more massive than the planet, Newton's second law says that the sun will experience much less acceleration.

Law of Universal Gravitation

F = G m1 m2 / r2
Every object in the Universe attracts every other object with a force directed along the line of centers for the two objects that is proportional to the product of their masses and inversely proportional to the square of the separation between the two objects. While the law does not explain what gravity is, it does say how the force of gravity works

Monday, 1 July 2019

Data communication Networking-Physical layer

Switching is process to forward packets coming in from one port to a port leading towards the destination. When data comes on a port it is called ingress, and when data leaves a port or goes out it is called egress. A communication system may include number of switches and nodes. At broad level, switching can be divided into two major categories:
  • Connectionless: The data is forwarded on behalf of forwarding tables. No previous handshaking is required and acknowledgements are optional.
  • Connection Oriented:  Before switching data to be forwarded to destination, there is a need to pre-establish circuit along the path between both endpoints. Data is then forwarded on that circuit. After the transfer is completed, circuits can be kept for future use or can be turned down immediately.

Circuit Switching

When two nodes communicate with each other over a dedicated communication path, it is called circuit switching.There 'is a need of pre-specified route from which data will travels and no other data is permitted.In circuit switching, to transfer the data, circuit must be established so that the data transfer can take place.
Circuits can be permanent or temporary. Applications which use circuit switching may have to go through three phases:
  • Establish a circuit
  • Transfer the data
  • Disconnect the circuit
Circuit Switching
Circuit switching was designed for voice applications. Telephone is the best suitable example of circuit switching. Before a user can make a call, a virtual path between caller and callee is established over the network.

Message Switching

This technique was somewhere in middle of circuit switching and packet switching. In message switching, the whole message is treated as a data unit and is switching / transferred in its entirety.
A switch working on message switching, first receives the whole message and buffers it until there are resources available to transfer it to the next hop. If the next hop is not having enough resource to accommodate large size message, the message is stored and switch waits.
Message Switching
This technique was considered substitute to circuit switching. As in circuit switching the whole path is blocked for two entities only. Message switching is replaced by packet switching. Message switching has the following drawbacks:
  • Every switch in transit path needs enough storage to accommodate entire message.
  • Because of store-and-forward technique and waits included until resources are available, message switching is very slow.
  • Message switching was not a solution for streaming media and real-time applications.

Packet Switching

Shortcomings of message switching gave birth to an idea of packet switching. The entire message is broken down into smaller chunks called packets. The switching information is added in the header of each packet and transmitted independently.
It is easier for intermediate networking devices to store small size packets and they do not take much resources either on carrier path or in the internal memory of switches.
Packet Switching
Packet switching enhances line efficiency as packets from multiple applications can be multiplexed over the carrier. The internet uses packet switching technique. Packet switching enables the user to differentiate data streams based on priorities. Packets are stored and forwarded according to their priority to provide quality of service.

Multiplexing -Physical layer

Multiplexing is a technique by which different analog and digital streams of transmission can be simultaneously processed over a shared link. Multiplexing divides the high capacity medium into low capacity logical medium which is then shared by different streams.
Communication is possible over the air (radio frequency), using a physical media (cable), and light (optical fiber). All mediums are capable of multiplexing.
When multiple senders try to send over a single medium, a device called Multiplexer divides the physical channel and allocates one to each. On the other end of communication, a De-multiplexer receives data from a single medium, identifies each, and sends to different receivers.

Frequency Division Multiplexing

When the carrier is frequency, FDM is used. FDM is an analog technology. FDM divides the spectrum or carrier bandwidth in logical channels and allocates one user to each channel. Each user can use the channel frequency independently and has exclusive access of it. All channels are divided in such a way that they do not overlap with each other. Channels are separated by guard bands. Guard band is a frequency which is not used by either channel.
Frequency Division Multiplexing

Time Division Multiplexing

TDM is applied primarily on digital signals but can be applied on analog signals as well. In TDM the shared channel is divided among its user by means of time slot. Each user can transmit data within the provided time slot only. Digital signals are divided in frames, equivalent to time slot i.e. frame of an optimal size which can be transmitted in given time slot.
TDM works in synchronized mode. Both ends, i.e. Multiplexer and De-multiplexer are timely synchronized and both switch to next channel simultaneously.
Time Division Multiplexing
When channel A transmits its frame at one end,the De-multiplexer provides media to channel A on the other end.As soon as the channel A’s time slot expires, this side switches to channel B. On the other end, the De-multiplexer works in a synchronized manner and provides media to channel B. Signals from different channels travel the path in interleaved manner.

Wavelength Division Multiplexing

Light has different wavelength (colors). In fiber optic mode, multiple optical carrier signals are multiplexed into an optical fiber by using different wavelengths. This is an analog multiplexing technique and is done conceptually in the same manner as FDM but uses light as signals.
Wavelength Division Multiplexing
Further, on each wavelength time division multiplexing can be incorporated to accommodate more data signals.

Code Division Multiplexing

Multiple data signals can be transmitted over a single frequency by using Code Division Multiplexing. FDM divides the frequency in smaller channels but CDM allows its users to full bandwidth and transmit signals all the time using a unique code. CDM uses orthogonal codes to spread signals.
Each station is assigned with a unique code, called chip. Signals travel with these codes independently, inside the whole bandwidth.The receiver knows in advance the chip code signal it has to receive.